Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 713
Filtrar
1.
Methods Mol Biol ; 2797: 323-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570470

RESUMO

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Diploide , Fibroblastos/patologia , Células Clonais , Linhagem Celular , Neoplasias/patologia , Isoformas de Proteínas
2.
Cancer Lett ; : 216878, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609001

RESUMO

Liver metastasis is the most common occurrence in gastric cancer patients, although the precise mechanism behind it remains unclear. Through a combination of proteomics and quantitative RT-PCR, our study has revealed a significant correlation between the upregulation of myocyte enhancer factor-2D (MEF2D) and both distant metastasis and poor prognosis in gastric cancer patients. In mouse models, we observed that overexpressing or knocking down MEF2D in gastric cancer cells respectively promoted or inhibited liver metastasis. Furthermore, our research has demonstrated that MEF2D regulates the transcriptional activation of H1X by binding to the H1X promoter. This regulation leads to the upregulation of H1X, which, in turn, promotes the in vivo metastasis of gastric cancer cells along with the upregulation of the downstream gene ß-CATENIN. Additionally, we found that the expression of MEF2D and H1X at both mRNA and protein levels can be induced by the inflammatory factor IL-13, and this induction exhibits a time gradient dependence. In human gastric cancer tissues, the expression of IL13RA1, the receptor for IL-13, positively correlates with the expression of MEF2D and H1X. IL13RA1 has been identified as an intermediate receptor through which IL-13 regulates MEF2D. In conclusion, our findings suggest that MEF2D plays a crucial role in promoting liver metastasis of gastric cancer by upregulating H1X and downstream target ß-CATENIN in response to IL-13 stimulation. Targeting MEF2D could therefore be a promising therapeutic strategy for the clinical management of gastric cancer. STATEMENT OF SIGNIFICANCE: MEF2D promotes its transcriptional activation in gastric cancer cells by binding to the H1X promoter and is upregulated by IL-13-IL13RA1, thereby promoting distant metastasis of gastric cancer.

3.
J Mol Biol ; 436(9): 168541, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492719

RESUMO

Interaction of transcription factor myocyte enhancer factor-2 (MEF2) family members with class IIa histone deacetylases (HDACs) has been implicated in a wide variety of diseases. Though considerable knowledge on this topic has been accumulated over the years, a high resolution and detailed analysis of the binding mode of multiple class IIa HDAC derived peptides with MEF2D is still lacking. To fulfil this gap, we report here the crystal structure of MEF2D in complex with double strand DNA and four different class IIa HDAC derived peptides, namely HDAC4, HDAC5, HDAC7 and HDAC9. All class IIa HDAC derived peptides form extended amphipathic α-helix structures that fit snugly in the hydrophobic groove of MEF2D domain. Binding mode of class IIa HDAC derived peptides to MEF2D is very similar and occur primarily through nonpolar interactions mediated by highly conserved branched hydrophobic amino acids. Further studies revealed that class IIa HDAC derived peptides are unstructured in solution and appear to adopt a folded α-helix structure only upon binding to MEF2D. Comparison of our peptide-protein complexes with previously characterized structures of MEF2 bound to different co-activators and co-repressors, highlighted both differences and similarities, and revealed the adaptability of MEF2 in protein-protein interactions. The elucidation of the three-dimensional structure of MEF2D in complex with multiple class IIa HDAC derived peptides provide not only a better understanding of the molecular basis of their interactions but also have implications for the development of novel antagonist.


Assuntos
DNA , Histona Desacetilases , Fatores de Transcrição MEF2 , Peptídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Fatores de Transcrição MEF2/química , Fatores de Transcrição MEF2/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , DNA/metabolismo , DNA/química , Humanos , Peptídeos/química , Peptídeos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dobramento de Proteína , Sequência de Aminoácidos
4.
Mol Cell Biol ; 44(2): 57-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483114

RESUMO

Myocyte enhancer factor 2 (MEF2) proteins are involved in multiple developmental, physiological, and pathological processes in vertebrates. Protein-protein interactions underlie the plethora of biological processes impacted by MEF2A, necessitating a detailed characterization of the MEF2A interactome. A nanobody based affinity-purification/mass spectrometry strategy was employed to achieve this goal. Specifically, the MEF2A protein complexes were captured from myogenic lysates using a GFP-tagged MEF2A protein immobilized with a GBP-nanobody followed by LC-MS/MS proteomic analysis to identify MEF2A interactors. After bioinformatic analysis, we further characterized the interaction of MEF2A with a transcriptional repressor, FOXP1. FOXP1 coprecipitated with MEF2A in proliferating myogenic cells which diminished upon differentiation (myotube formation). Ectopic expression of FOXP1 inhibited MEF2A driven myogenic reporter genes (derived from the creatine kinase muscle and myogenin genes) and delayed induction of endogenous myogenin during differentiation. Conversely, FOXP1 depletion enhanced MEF2A transactivation properties and myogenin expression. The FoxP1:MEF2A interaction is also preserved in cardiomyocytes and FoxP1 depletion enhanced cardiomyocyte hypertrophy. FOXP1 prevented MEF2A phosphorylation and activation by the p38MAPK pathway. Overall, these data implicate FOXP1 in restricting MEF2A function in order to avoid premature differentiation in myogenic progenitors and also to possibly prevent re-activation of embryonic gene expression in cardiomyocyte hypertrophy.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Fatores de Transcrição MEF2/genética , Miogenina , Cromatografia Líquida , Músculo Esquelético/fisiologia , Hipertrofia
5.
Gene ; 909: 148322, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423140

RESUMO

Myocyte-specific enhancer binding factor 2 (MEF2), which belongs to the MADS superfamily, is a pivotal and conserved transcription factor that combines with the E-box motif to control the expression of muscle genes. Myostatin (mstn), a muscle growth inhibitor, is a vital member of the TGF-ß superfamily. Currently, an understanding of the mechanisms of A. latus mstn (Almstn) transcriptional regulation mediated by MEF2 in fish muscle development is lacking. In the present study, two AlMEF2s (AlMEF2A and AlMEF2B) and Almstn2a were characterized from Acanthopagrus latus. AlMEF2A and AlMEF2B had 456 and 315 amino acid (aa) residues, respectively. Two typical regions, a MADS-box, MEF2, and transcriptionally activated (TAD) domains, are present in both AlMEF2s. The expression profiles of the two AlMEF2 genes were similar. The AlMEF2 genes were mainly expressed in the brain, white muscle, and liver, while Almstn2a expression was higher in the brain than in other tissues. Moreover, the expression trends of AlMEF2s and Almstn2a were significantly changed after starvation and refeeding in the five groups. Additionally, truncation experiments showed that -987 to +168 and -105 to +168 were core promoters of Almstn2a that responded to AlMEF2A and AlMEF2B, respectively. The point mutation experiment confirmed that Almstn2a transcription relies on the mutation binding sites 1 or 5 (M1/5) and mutation binding sites 4 or 5 (M4/5) for AlMEF2A and AlMEF2B regulation, respectively. The electrophoretic mobile shift assay (EMSA) further verified that M1 (-527 to -512) was a pivotal site where AlMEF2A acted on the Almstn2a gene. Furthermore, a siRNA interference gene expression experiment showed that reduced levels of AlMEF2A or AlMEF2B could prominently increase Almstn2a transcription. These results provide new information about the regulation of Almstn2a transcriptional activity by AlMEF2s and a theoretical basis for the regulatory mechanisms involved in muscle development in fish.


Assuntos
Perciformes , Dourada , Animais , Dourada/genética , Dourada/metabolismo , Fatores de Regulação Miogênica/genética , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Músculos/metabolismo , Perciformes/genética , Perciformes/metabolismo
6.
FEBS Open Bio ; 14(4): 545-554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38318686

RESUMO

Protein phosphatase 6 is a Ser/Thr protein phosphatase and its catalytic subunit is Ppp6c. Ppp6c is thought to be indispensable for proper growth of normal cells. On the other hand, loss of Ppp6c accelerates growth of oncogenic Ras-expressing cells. Although it has been studied in multiple contexts, the role(s) of Ppp6c in cell proliferation remains controversial. It is unclear how oncogenic K-Ras overcomes cell proliferation failure induced by Ppp6c deficiency; therefore, in this study, we attempted to shed light on how oncogenic K-Ras modulates tumor cell growth. Contrary to our expectations, loss of Ppp6c decreased proliferation, anchorage-independent growth in soft agar, and tumor formation of oncogenic Ras-expressing mouse embryonic fibroblasts (MEFs). These findings show that oncogenic K-RasG12V cannot overcome proliferation failure caused by loss of Ppp6c in MEFs.


Assuntos
Fibroblastos , Fosfoproteínas Fosfatases , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Proliferação de Células/genética , Fibroblastos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
7.
Neoplasia ; 49: 100971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301392

RESUMO

More than half of all cancers demonstrate aberrant c-Myc expression, making this arguably the most important human oncogene. Deregulated long non-coding RNAs (lncRNAs) are also commonly implicated in tumorigenesis, and some limited examples have been established where lncRNAs act as biological tuners of c-Myc expression and activity. Here, we demonstrate that the lncRNA denoted c-Myc Enhancing Factor (MEF) enjoys a cooperative relationship with c-Myc, both as a transcriptional target and driver of c-Myc expression. Mechanistically, MEF functions by binding to and stabilizing the expression of hnRNPK in colorectal cancer cells. The MEF-hnRNPK interaction serves to disrupt binding between hnRNPK and the E3 ubiquitin ligase TRIM25, which attenuates TRIM25-dependent hnRNPK ubiquitination and proteasomal destruction. In turn, the stabilization of hnRNPK through MEF enhances c-Myc expression by augmenting the translation c-Myc. Moreover, modulating the expression of MEF in shRNA-mediated knockdown and overexpression studies revealed that MEF expression is essential for colorectal cancer cell proliferation and survival, both in vitro and in vivo. From the clinical perspective, we show that MEF expression is differentially increased in colorectal cancer tissues compared to normal adjacent tissues. Further, correlations exist between MEF, c-Myc, and hnRNPK suggesting the MEF-c-Myc positive feedback loop is active in patients. Together these data demonstrate that MEF is a pivotal partner of the c-Myc network and propose MEF as a valuable therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral
8.
J Clin Med ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38337599

RESUMO

(1) Background: Mandibular fractures are common, with the condylar process being a frequent site of injury, accounting for 25-45% of cases. This research aims to assess the mechanical suitability of various plates for high-neck condyle fractures. (2) Methods: Polyurethane models mimicking high-neck condyle fractures were utilized in this study. Sixteen distinct plate designs, constructed from titanium sheets, were tested. The figures underwent force assessments on a durability testing apparatus, and the relationship between used force and fracture movement was documented. (3) Results: For high-neck breaking, the two straight plates emerged as the most effective, aligning with established osteosynthesis standards. The second-best plate exhibited nearly half the strength of the gold standard. (4) Conclusions: In response to the aim of this study, considering the mechanical aspects, the double plain plate stands out as the optimal choice for osteosynthesis in cases of high-neck fractures of the mandibular condylar process. In addition, the authors propose the Mechanical Excellence Factor (MEF) as a superior metric for appraising a plate's mechanical force, surpassing the conventional Plate Design Factor (PDF).

9.
Biol Psychiatry Glob Open Sci ; 4(2): 100289, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390348

RESUMO

Background: Heterozygous mutations or deletions of MEF2C cause a neurodevelopmental disorder termed MEF2C haploinsufficiency syndrome (MCHS), characterized by autism spectrum disorder and neurological symptoms. In mice, global Mef2c heterozygosity has produced multiple MCHS-like phenotypes. MEF2C is highly expressed in multiple cell types of the developing brain, including GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but the influence of MEF2C hypofunction in GABAergic neurons on MCHS-like phenotypes remains unclear. Methods: We employed GABAergic cell type-specific manipulations to study mouse Mef2c heterozygosity in a battery of MCHS-like behaviors. We also performed electroencephalography, single-cell transcriptomics, and patch-clamp electrophysiology and optogenetics to assess the impact of Mef2c haploinsufficiency on gene expression and prefrontal cortex microcircuits. Results: Mef2c heterozygosity in developing GABAergic cells produced female-specific deficits in social preference and altered approach-avoidance behavior. In female, but not male, mice, we observed that Mef2c heterozygosity in developing GABAergic cells produced 1) differentially expressed genes in multiple cell types, including parvalbumin-expressing GABAergic neurons, 2) baseline and social-related frontocortical network activity alterations, and 3) reductions in parvalbumin cell intrinsic excitability and inhibitory synaptic transmission onto deep-layer pyramidal neurons. Conclusions: MEF2C hypofunction in female, but not male, developing GABAergic cells is important for typical sociability and approach-avoidance behaviors and normal parvalbumin inhibitory neuron function in the prefrontal cortex of mice. While there is no apparent sex bias in autism spectrum disorder symptoms of MCHS, our findings suggest that GABAergic cell-specific dysfunction in females with MCHS may contribute disproportionately to sociability symptoms.

10.
J Mol Cell Cardiol ; 188: 38-51, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224851

RESUMO

RNA binding proteins have been shown to regulate heart development and cardiac diseases. However, the detailed molecular mechanisms is not known. In this study, we identified Wilms' tumor 1-associating protein (WTAP, a key regulatory protein of the m6A RNA methyltransferase complex) as a key regulator of heart function and cardiac diseases. WTAP is associated with heart development, and its expression is downregulated in both human and mice with heart failure. Cardiomyocyte-specific knockout of Wtap (Wtap-CKO) induces dilated cardiomyopathy, heart failure and neonatal death. Although WTAP deficiency in the heart decreases METTL3 (methyltransferase-like 3) protein levels, cardiomyocyte-specific overexpression of Mettl3 in Wtap-CKO mice does not rescue the phenotypes of Wtap-CKO mice. Instead, WTAP deficiency in the heart decreases chromatin accessibility in the promoter regions of Mef2a (myocyte enhancer factor-2α) and Mef2c, leading to reduced mRNA and protein levels of these genes and lower expression of their target genes. Conversely, WTAP directly binds to the promoter of the Mef2c gene and increases its promoter luciferase activity and expression. These data demonstrate that WTAP plays a key role in heart development and cardiac function by maintaining the chromatin accessibility of cardiomyocyte specific genes.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cromatina , Regulação para Baixo , Insuficiência Cardíaca/genética , Metiltransferases , Miócitos Cardíacos
11.
Biomed Pharmacother ; 171: 116138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237352

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mefloquina , Humanos , Camundongos , Animais , Mefloquina/uso terapêutico , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Fibrose , Transdução de Sinais , Bleomicina/farmacologia , Canal de Potássio ERG1/metabolismo
12.
BMC Biol ; 22(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167120

RESUMO

BACKGROUND: Dysregulation of nucleocytoplasmic shuttling of histone deacetylase 4 (HDAC4) is associated with several neurodevelopmental and neurodegenerative disorders. Consequently, understanding the roles of nuclear and cytoplasmic HDAC4 along with the mechanisms that regulate nuclear entry and exit is an area of concerted effort. Efficient nuclear entry is dependent on binding of the transcription factor MEF2, as mutations in the MEF2 binding region result in cytoplasmic accumulation of HDAC4. It is well established that nuclear exit and cytoplasmic retention are dependent on 14-3-3-binding, and mutations that affect binding are widely used to induce nuclear accumulation of HDAC4. While regulation of HDAC4 shuttling is clearly important, there is a gap in understanding of how the nuclear and cytoplasmic distribution of HDAC4 impacts its function. Furthermore, it is unclear whether other features of the protein including the catalytic site, the MEF2-binding region and/or the ankyrin repeat binding motif influence the distribution and/or activity of HDAC4 in neurons. Since HDAC4 functions are conserved in Drosophila, and increased nuclear accumulation of HDAC4 also results in impaired neurodevelopment, we used Drosophila as a genetic model for investigation of HDAC4 function. RESULTS: Here we have generated a series of mutants for functional dissection of HDAC4 via in-depth examination of the resulting subcellular distribution and nuclear aggregation, and correlate these with developmental phenotypes resulting from their expression in well-established models of neuronal morphogenesis of the Drosophila mushroom body and eye. We found that in the mushroom body, forced sequestration of HDAC4 in the nucleus or the cytoplasm resulted in defects in axon morphogenesis. The actions of HDAC4 that resulted in impaired development were dependent on the MEF2 binding region, modulated by the ankyrin repeat binding motif, and largely independent of an intact catalytic site. In contrast, disruption to eye development was largely independent of MEF2 binding but mutation of the catalytic site significantly reduced the phenotype, indicating that HDAC4 acts in a neuronal-subtype-specific manner. CONCLUSIONS: We found that the impairments to mushroom body and eye development resulting from nuclear accumulation of HDAC4 were exacerbated by mutation of the ankyrin repeat binding motif, whereas there was a differing requirement for the MEF2 binding site and an intact catalytic site. It will be of importance to determine the binding partners of HDAC4 in nuclear aggregates and in the cytoplasm of these tissues to further understand its mechanisms of action.


Assuntos
Repetição de Anquirina , Drosophila , Histona Desacetilases , Animais , Domínio Catalítico , Núcleo Celular/metabolismo , Drosophila/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Morfogênese , Neurônios/metabolismo
13.
Front Zool ; 21(1): 2, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267986

RESUMO

BACKGROUND: Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS: In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION: We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.

14.
Bone ; 179: 116976, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042445

RESUMO

Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Osso e Ossos , Fatores de Transcrição MEF2 , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição MEF2/genética , Osteoblastos/metabolismo , Osteogênese/genética
15.
Genes Chromosomes Cancer ; 63(1): e23209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870842

RESUMO

Smooth muscle tumors are the most common mesenchymal tumors of the female genital tract, including the vulva. Since vulvar smooth muscle tumors are rare, our understanding of them compared to their uterine counterparts continues to evolve. Herein, we present two cases of morphologically distinct myxoid epithelioid smooth muscle tumors of the vulva with novel MEF2D::NCOA2 gene fusion. The tumors involved 24 and 37-year-old women. Both tumors presented as palpable vulvar masses that were circumscribed, measuring 2.8 and 5.1 cm in greatest dimension. Histologically, they were composed of epithelioid to spindle-shaped cells with minimal cytologic atypia and prominent myxoid matrix. Rare mitotic figures were present (1-3 mitotic figures per 10 high-power field (HPF)), and no areas of tumor necrosis were identified. By immunohistochemistry, the neoplastic cells strongly expressed smooth muscle actin, calponin, and desmin, confirming smooth muscle origin. Next-generation sequencing identified identical MEF2D::NCOA2 gene fusions. These two cases demonstrate that at least a subset of myxoid epithelioid smooth muscle tumors of the vulva represent a distinct entity characterized by a novel MEF2D::NCOA2 gene fusion. Importantly, recognition of the distinct morphologic and genetic features of these tumors is key to understanding the biological potential of these rare tumors.


Assuntos
Tumor de Músculo Liso , Adulto , Feminino , Humanos , Adulto Jovem , Biomarcadores Tumorais/genética , Fusão Gênica , Fatores de Transcrição MEF2/genética , Coativador 2 de Receptor Nuclear/genética , Tumor de Músculo Liso/patologia , Vulva/patologia
16.
Acta Neurol Belg ; 124(1): 141-149, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37572262

RESUMO

PURPOSE: Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelinating lesions in the white matter of the central nervous system. Myocyte enhancer factor 2 (MEF2) family genes play important roles in the immune response. This study focuses on the relationship between MEF2 family gene polymorphisms and MS. METHODS: A total of 174 MS patients and 120 healthy controls were recruited. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to analyze the gene polymorphisms of MEF2D and MEF2C. In addition, peripheral blood was collected and leukocytes were isolated. The transcription level of MEF2D in the two groups of samples was detected with quantitative real time polymerase chain reaction (qRT-PCR). RESULTS: We found that the C allele frequency and CC genotype frequency of rs2274316 in MEF2D were significantly higher in MS patients. The C allele and CT genotype distribution for rs3790455 were significantly more frequent in MS patients. Female patients showed higher CC genotype frequency of rs2274316. The genotype frequency distribution of rs2274316 and rs3790455 were not related to onset age and phenotype of MS patients. In addition, this study also proved that MEF2D was significantly overexpressed in the peripheral blood leukocytes of MS patients. The transcription level of MEF2D was significantly higher in patients with CC genotype of rs2274316. CONCLUSION: These findings suggest rs2274316 and rs3790455 of MEF2D gene are potential genetic risk factors for MS in Chinese population. The transcription level of MEF2D is also associated with susceptibility to MS and MEF2D gene polymorphisms.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Fatores de Transcrição MEF2/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Frequência do Gene , China , Predisposição Genética para Doença/genética , Estudos de Casos e Controles
17.
Nephron ; 148(4): 245-263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142674

RESUMO

INTRODUCTION: Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD: Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT: In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION: CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.


Assuntos
Nefropatias Diabéticas , Rim/anormalidades , RNA Longo não Codificante , Obstrução Ureteral , Anormalidades Urogenitais , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Baixo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/farmacologia , Lipopolissacarídeos , Hibridização in Situ Fluorescente , Macrófagos/patologia , Obstrução Ureteral/genética , Obstrução Ureteral/patologia , Nefropatias Diabéticas/metabolismo , Fibrose , Inflamação/genética , Inflamação/patologia
18.
Cell Rep ; 43(1): 113557, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38113141

RESUMO

Metabolic reprogramming in pediatric diffuse midline glioma is driven by gene expression changes induced by the hallmark histone mutation H3K27M, which results in aberrantly permissive activation of oncogenic signaling pathways. Previous studies of diffuse midline glioma with altered H3K27 (DMG-H3K27a) have shown that the RAS pathway, specifically through its downstream kinase, extracellular-signal-related kinase 5 (ERK5), is critical for tumor growth. Further downstream effectors of ERK5 and their role in DMG-H3K27a metabolic reprogramming have not been explored. We establish that ERK5 is a critical regulator of cell proliferation and glycolysis in DMG-H3K27a. We demonstrate that ERK5 mediates glycolysis through activation of transcription factor MEF2A, which subsequently modulates expression of glycolytic enzyme PFKFB3. We show that in vitro and mouse models of DMG-H3K27a are sensitive to the loss of PFKFB3. Multi-targeted drug therapy against the ERK5-PFKFB3 axis, such as with small-molecule inhibitors, may represent a promising therapeutic approach in patients with pediatric diffuse midline glioma.


Assuntos
Glioma , Histonas , Animais , Criança , Humanos , Camundongos , MAP Quinases Reguladas por Sinal Extracelular , Glioma/genética , Glicólise , Histonas/genética , Fosfofrutoquinase-2 , Monoéster Fosfórico Hidrolases , Transdução de Sinais
19.
J Neurosci ; 44(5)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38123360

RESUMO

Mutations in the activity-dependent transcription factor MEF2C have been associated with several neuropsychiatric disorders. Among these, autism spectrum disorder (ASD)-related behavioral deficits are manifested. Multiple animal models that harbor mutations in Mef2c have provided compelling evidence that Mef2c is indeed an ASD gene. However, studies in mice with germline or global brain knock-out of Mef2c are limited in their ability to identify the precise neural substrates and cell types that are required for the expression of Mef2c-mediated ASD behaviors. Given the role of hippocampal neurogenesis in cognitive and social behaviors, in this study we aimed to investigate the role of Mef2c in the structure and function of newly generated dentate granule cells (DGCs) in the postnatal hippocampus and to determine whether disrupted Mef2c function is responsible for manifesting ASD behaviors. Overexpression of Mef2c (Mef2cOE ) arrested the transition of neurogenesis at progenitor stages, as indicated by sustained expression of Sox2+ in Mef2cOE DGCs. Conditional knock-out of Mef2c (Mef2ccko ) allowed neuronal commitment of Mef2ccko cells; however, Mef2ccko impaired not only dendritic arborization and spine formation but also synaptic transmission onto Mef2ccko DGCs. Moreover, the abnormal structure and function of Mef2ccko DGCs led to deficits in social interaction and social novelty recognition, which are key characteristics of ASD behaviors. Thus, our study revealed a dose-dependent requirement of Mef2c in the control of distinct steps of neurogenesis, as well as a critical cell-autonomous function of Mef2c in newborn DGCs in the expression of proper social behavior in both sexes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Feminino , Camundongos , Animais , Transtorno do Espectro Autista/genética , Hipocampo , Neurônios/fisiologia , Neurogênese/fisiologia , Fatores de Transcrição MEF2/genética
20.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958849

RESUMO

Andrographolide, a medicinal compound, exhibits several pharmacological activities, including antiviral and anticancer properties. Previously, we reported that andrographolide inhibits Epstein-Barr virus (EBV) lytic reactivation, which is associated with viral transmission and oncogenesis in epithelial cancers, including head-and-neck cancer (HNC) cells. However, the underlying mechanism through which andrographolide inhibits EBV lytic reactivation and affects HNC cells is poorly understood. Therefore, we investigated these mechanisms using EBV-positive HNC cells and the molecular modeling and docking simulation of protein. Based on the results, the expression of EBV lytic genes and viral production were significantly inhibited in andrographolide-treated EBV-positive HNC cells. Concurrently, there was a reduction in transcription factors (TFs), myocyte enhancer factor-2D (MEF2D), specificity protein (SP) 1, and SP3, which was significantly associated with a combination of andrographolide and sodium butyrate (NaB) treatment. Surprisingly, andrographolide treatment also significantly induced the expression of DNA Methyltransferase (DNMT) 1, DNMT3B, and histone deacetylase (HDAC) 5 in EBV-positive cells. Molecular modeling and docking simulation suggested that HDAC5 could directly interact with MEF2D, SP1, and SP3. In our in vitro study, andrographolide exhibited a stronger cytotoxic effect on EBV-positive cells than EBV-negative cells by inducing cell death. Interestingly, the proteome analysis revealed that the expression of RIPK1, RIPK3, and MLKL, the key molecules for necroptosis, was significantly greater in andrographolide-treated cells. Taken together, it seems that andrographolide exhibits concurrent activities in HNC cells; it inhibits EBV lytic reactivation by interrupting the expression of TFs and induces cell death, probably via necroptosis.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias de Cabeça e Pescoço , Humanos , Herpesvirus Humano 4/fisiologia , Ativação Viral , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...